Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 12: 703069, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483959

RESUMO

Objective: Chronic hypoxia induces pulmonary and cardiovascular pathologies, including pulmonary hypertension (PH). L-arginine:glycine amidinotransferase (AGAT) is essential for homoarginine (hArg) and guanidinoacetate synthesis, the latter being converted to creatine by guanidinoacetate methyltransferase. Low hArg concentrations are associated with cardiovascular morbidity and predict mortality in patients with PH. We therefore aimed to investigate the survival and cardiac outcome of AGAT knockout (Agat -/-) mice under hypoxia and a possible rescue of the phenotype. Methods: Agat -/- mice and wild-type (WT) littermates were subjected to normoxia or normobaric hypoxia (10% oxygen) for 4 weeks. A subgroup of Agat -/- mice was supplemented with 1% creatine from weaning. Survival, hematocrit, blood lactate and glucose, heart weight-to-tibia length (HW/TL) ratio, hArg plasma concentration, and Agat and Gamt expression in lung, liver, and kidneys were evaluated. Results: After 6 h of hypoxia, blood lactate was lower in Agat -/--mice as compared to normoxia (p < 0.001). Agat -/- mice died within 2 days of hypoxia, whereas Agat -/- mice supplemented with creatine and WT mice survived until the end of the study. In WT mice, hematocrit (74 ± 4 vs. 55 ± 2%, mean ± SD, p < 0.001) and HW/TL (9.9 ± 1.3 vs. 7.3 ± 0.7 mg/mm, p < 0.01) were higher in hypoxia, while hArg plasma concentration (0.25 ± 0.06 vs. 0.38 ± 0.12 µmol/L, p < 0.01) was lower. Agat and Gamt expressions were differentially downregulated by hypoxia in lung, liver, and kidneys. Conclusion: Agat and Gamt are downregulated in hypoxia. Agat-/- mice are nonviable in hypoxia. Creatine rescues the lethal phenotype, but it does not reduce right ventricular hypertrophy of Agat-/- mice in hypoxia.

2.
Hypertension ; 75(4): 1110-1116, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32078412

RESUMO

A key finding supporting a causal role of the immune system in the pathogenesis of hypertension is the observation that RAG1 knockout mice on a C57Bl/6J background (B6.Rag1-/-), which lack functional B and T cells, develop a much milder hypertensive response to Ang II (angiotensin II) than control C57Bl/6J mice. Here, we report that we never observed any Ang II resistance of B6.Rag1-/- mice purchased directly from the Jackson Laboratory as early as 2009. B6.Rag1-/- mice displayed nearly identical blood pressure increases monitored via radiotelemetry and hypertensive end-organ damage in response to different doses of Ang II and different levels of salt intake (0.02%, 0.3%, and 3% NaCl diet). Similarly, restoration of T-cell immunity by adoptive cell transfer did not affect the blood pressure response to Ang II in B6.Rag1-/- mice. Full development of the hypertension-resistant phenotype in B6.Rag1-/- mice appears to depend on the action of yet unidentified nongenetic modifiers in addition to the absence of functional T cells.


Assuntos
Angiotensina II , Proteínas de Homeodomínio/genética , Hipertensão/induzido quimicamente , Fenótipo , Animais , Modelos Animais de Doenças , Hipertensão/genética , Masculino , Camundongos , Camundongos Knockout
3.
Am J Physiol Renal Physiol ; 315(6): F1526-F1535, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30207169

RESUMO

The role of CX3CR1, also known as fractalkine receptor, in hypertension is unknown. The present study determined the role of the fractalkine receptor CX3CR1 in hypertensive renal and cardiac injury. Expression of CX3CR1 was determined using CX3CR1GFP/+ mice that express a green fluorescent protein (GFP) reporter in CX3CR1+ cells. FACS analysis of leukocytes isolated from the kidney showed that 34% of CD45+ cells expressed CX3CR1. Dendritic cells were the majority of positive cells (67%) followed by macrophages (10%), NK cells (6%), and T cells (10%). With the use of confocal microscopy, the receptor was detected in the kidney only on infiltrating cells but not on resident renal cells. To evaluate the role of CX3CR1 in hypertensive end-organ injury, an aggravated model of hypertension was used. Unilateral nephrectomy was performed followed by infusion of angiotensin II (ANG II, 1.5 ng·g-1·min-1) and a high-salt diet in wild-type ( n = 15) and CX3CR1-deficient mice ( n = 18). CX3CR1 deficiency reduced the number of renal dendritic cells and increased the numbers of renal CD11b/F4/80+ macrophages and CD11b/Ly6G+ neutrophils in ANG II-infused mice. Surprisingly, CX3CR1-deficient mice exhibited increased albuminuria, glomerular injury, and reduced podocyte density in spite of similar levels of arterial hypertension. In contrast, cardiac damage as assessed by increased heart weight, cardiac fibrosis, and expression of fetal genes, and matrix components were not different between both genotypes. Our findings suggest that CX3CR1 exerts protective properties by modulating the invasion of inflammatory cells in hypertensive renal injury. CX3CR1 inhibition should be avoided in hypertension because it may promote hypertensive renal injury.


Assuntos
Angiotensina II , Pressão Arterial , Receptor 1 de Quimiocina CX3C/metabolismo , Células Dendríticas/metabolismo , Hipertensão/metabolismo , Nefropatias/prevenção & controle , Rim/metabolismo , Leucócitos/metabolismo , Macrófagos/metabolismo , Albuminúria/metabolismo , Albuminúria/fisiopatologia , Albuminúria/prevenção & controle , Animais , Receptor 1 de Quimiocina CX3C/deficiência , Receptor 1 de Quimiocina CX3C/genética , Quimiotaxia de Leucócito , Modelos Animais de Doenças , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/fisiopatologia , Rim/patologia , Rim/fisiopatologia , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Células Matadoras Naturais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Neutrófilos/patologia , Transdução de Sinais , Linfócitos T/metabolismo , Linfócitos T/patologia
4.
Nat Commun ; 5: 4664, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25144323

RESUMO

The mechanisms underlying cardiac automaticity are still incompletely understood and controversial. Here we report the complete conditional and time-controlled silencing of the 'funny' current (If) by expression of a dominant-negative, non-conductive HCN4-channel subunit (hHCN4-AYA). Heart-specific If silencing caused altered [Ca(2+)]i release and Ca(2+) handling in the sinoatrial node, impaired pacemaker activity and symptoms reminiscent of severe human disease of pacemaking. The effects of If silencing critically depended on the activity of the autonomic nervous system. We were able to rescue the failure of impulse generation and conduction by additional genetic deletion of cardiac muscarinic G-protein-activated (GIRK4) channels in If-deficient mice without impairing heartbeat regulation. Our study establishes the role of f-channels in cardiac automaticity and indicates that arrhythmia related to HCN loss-of-function may be managed by pharmacological or genetic inhibition of GIRK4 channels, thus offering a new therapeutic strategy for the treatment of heart rhythm diseases.


Assuntos
Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Proteínas Musculares/genética , Canais de Potássio/genética , Animais , Arritmias Cardíacas/tratamento farmacológico , Benzazepinas/farmacologia , Sinalização do Cálcio/genética , Modelos Animais de Doenças , Feminino , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Frequência Cardíaca/efeitos dos fármacos , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ivabradina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Oócitos/fisiologia , Técnicas de Patch-Clamp , Canais de Potássio/metabolismo , Gravidez , Xenopus
5.
J Physiol ; 592(12): 2563-74, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24687584

RESUMO

The large conductance voltage- and Ca(2+)-activated K(+) (BK) channel is an important determinant of vascular tone and contributes to blood pressure regulation. Both activities depend on the ancillary BKß1 subunit. To determine the significance of smooth muscle BK channel activity for blood pressure regulation, we investigated the potential link between changes in arterial tone and altered blood pressure in BKß1 knockout (BKß1(-/-)) mice from three different genetically defined strains. While vascular tone was consistently increased in all BKß1(-/-) mice independent of genetic background, BKß1(-/-) strains exhibited increased (strain A), unaltered (strain B) or decreased (strain C) mean arterial blood pressures compared to their corresponding BKß1(+/+) controls. In agreement with previous data on aldosterone regulation by renal/adrenal BK channel function, BKß1(-/-) strain A mice have increased plasma aldosterone and increased blood pressure. Consistently, blockade of mineralocorticoid receptors by spironolactone treatment reversibly restored the elevated blood pressure to the BKß1(+/+) strain A level. In contrast, loss of BKß1 did not affect plasma aldosterone in strain C mice. Smooth muscle-restricted restoration of BKß1 expression increased blood pressure in BKß1(-/-) strain C mice, implying that impaired smooth muscle BK channel activity lowers blood pressure in these animals. We conclude that BK channel activity directly affects vascular tone but influences blood pressure independent of this effect via different pathways.


Assuntos
Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/fisiologia , Músculo Liso/fisiologia , Aldosterona/sangue , Animais , Aorta Torácica/fisiologia , Pressão Sanguínea/fisiologia , Técnicas In Vitro , Rim/fisiologia , Camundongos Transgênicos , Células Musculares/fisiologia , Oócitos/fisiologia , Xenopus
6.
J Physiol ; 592(5): 1139-57, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24396058

RESUMO

A network of kinases, including WNKs, SPAK and Sgk1, is critical for the independent regulation of K+ and Na+ transport in the distal nephron. Angiotensin II is thought to act as a key hormone in orchestrating these kinases to switch from K+ secretion during hyperkalaemia to Na+ reabsorption during intravascular volume depletion, thus keeping disturbances in electrolyte and blood pressure homeostasis at a minimum. It remains unclear, however, how K+ and Na+ transport are regulated during a high Na+ intake, which is associated with suppressed angiotensin II levels and a high distal tubular Na+ load. We therefore investigated the integrated blood pressure, renal, hormonal and gene and protein expression responses to large changes of K+ intake in Na+ replete mice. Both low and high K+ intake increased blood pressure and caused Na+ retention. Low K+ intake was accompanied by an upregulation of the sodium-chloride cotransporter (NCC) and its activating kinase SPAK, and inhibition of NCC normalized blood pressure. Renal responses were unaffected by angiotensin AT1 receptor antagonism, indicating that low K+ intake activates the distal nephron by an angiotensin-independent mode of action. High K+ intake was associated with elevated plasma aldosterone concentrations and an upregulation of the epithelial sodium channel (ENaC) and its activating kinase Sgk1. Surprisingly, high K+ intake increased blood pressure even during ENaC or mineralocorticoid receptor antagonism, suggesting the contribution of aldosterone-independent mechanisms. These findings show that in a Na+ replete state, changes in K+ intake induce specific molecular and functional adaptations in the distal nephron that cause a functional coupling of renal K+ and Na+ handling, resulting in Na+ retention and high blood pressure when K+ intake is either restricted or excessively increased.


Assuntos
Hiperpotassemia/fisiopatologia , Hipertensão Renal/fisiopatologia , Rim/fisiopatologia , Potássio na Dieta/metabolismo , Potássio/metabolismo , Sódio na Dieta/metabolismo , Sódio/metabolismo , Aldosterona/metabolismo , Animais , Pressão Sanguínea , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
J Clin Invest ; 124(2): 675-86, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24401273

RESUMO

High blood pressure is the leading risk factor for death worldwide. One of the hallmarks is a rise of peripheral vascular resistance, which largely depends on arteriole tone. Ca2+-activated chloride currents (CaCCs) in vascular smooth muscle cells (VSMCs) are candidates for increasing vascular contractility. We analyzed the vascular tree and identified substantial CaCCs in VSMCs of the aorta and carotid arteries. CaCCs were small or absent in VSMCs of medium-sized vessels such as mesenteric arteries and larger retinal arterioles. In small vessels of the retina, brain, and skeletal muscle, where contractile intermediate cells or pericytes gradually replace VSMCs, CaCCs were particularly large. Targeted disruption of the calcium-activated chloride channel TMEM16A, also known as ANO1, in VSMCs, intermediate cells, and pericytes eliminated CaCCs in all vessels studied. Mice lacking vascular TMEM16A had lower systemic blood pressure and a decreased hypertensive response following vasoconstrictor treatment. There was no difference in contractility of medium-sized mesenteric arteries; however, responsiveness of the aorta and small retinal arterioles to the vasoconstriction-inducing drug U46619 was reduced. TMEM16A also was required for peripheral blood vessel contractility, as the response to U46619 was attenuated in isolated perfused hind limbs from mutant mice. Out data suggest that TMEM16A plays a general role in arteriolar and capillary blood flow and is a promising target for the treatment of hypertension.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Canais de Cloreto/metabolismo , Hipertensão/fisiopatologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Anoctamina-1 , Arteríolas/patologia , Pressão Sanguínea/fisiologia , Encéfalo/metabolismo , Clonagem Molecular , DNA Complementar/metabolismo , Eletrofisiologia , Antagonistas de Estrogênios/farmacologia , Células HEK293 , Humanos , Hipertensão/tratamento farmacológico , Potenciais da Membrana/efeitos dos fármacos , Artérias Mesentéricas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/citologia , Proteínas de Neoplasias/metabolismo , Pericitos/metabolismo , Retina/metabolismo , Tamoxifeno/farmacologia , Fatores de Tempo , Resistência Vascular , Vasoconstritores/farmacologia
8.
Nat Med ; 16(4): 470-4, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20305660

RESUMO

Observational clinical and ex vivo studies have established a strong association between atrial fibrillation and inflammation. However, whether inflammation is the cause or the consequence of atrial fibrillation and which specific inflammatory mediators may increase the atria's susceptibility to fibrillation remain elusive. Here we provide experimental and clinical evidence for the mechanistic involvement of myeloperoxidase (MPO), a heme enzyme abundantly expressed by neutrophils, in the pathophysiology of atrial fibrillation. MPO-deficient mice pretreated with angiotensin II (AngII) to provoke leukocyte activation showed lower atrial tissue abundance of the MPO product 3-chlorotyrosine, reduced activity of matrix metalloproteinases and blunted atrial fibrosis as compared to wild-type mice. Upon right atrial electrophysiological stimulation, MPO-deficient mice were protected from atrial fibrillation, which was reversed when MPO was restored. Humans with atrial fibrillation had higher plasma concentrations of MPO and a larger MPO burden in right atrial tissue as compared to individuals devoid of atrial fibrillation. In the atria, MPO colocalized with markedly increased formation of 3-chlorotyrosine. Our data demonstrate that MPO is a crucial prerequisite for structural remodeling of the myocardium, leading to an increased vulnerability to atrial fibrillation.


Assuntos
Fibrilação Atrial/enzimologia , Peroxidase/fisiologia , Angiotensina II/farmacologia , Animais , Fibrilação Atrial/fisiopatologia , Átrios do Coração/fisiopatologia , Humanos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/fisiologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Neutrófilos/fisiologia , Peroxidase/metabolismo , Tirosina/análogos & derivados , Tirosina/sangue , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...